LESSON PLAN OF CIRCUIT AND NETWORK THEORY FOR SEM-2021-22

Discipline- Electrical Engg.	Semester-3 rd	Name of the teaching faculty- S. S Sahu
Subject- Circuit and Network	No of days/week	No of weeks-15
Theory	class allotted-5	
Week	Class day	Theory topic
1	1 st	Magnetic circuit introduction
	2 nd	Magnetizing force, Magnetic intensity
	3 rd	MMF, Flux and their relation
	4 th	Analogy between magnetic circuit and electric circuit
	5 th	Numerical on magnetic circuit
2	1 st	Series and parallel magnetic circuit and problem solve
	2 nd	Complete numerical on magnetic circuit
	3 rd	BH curve and hysteresis loop
	4 th	Coupled Circuit
	5 th	Self-Inductance and mutual Inductance
3	1 st	Coefficient of coupling
	2 nd	Series connection of coupled coils
	3 rd	Modeling of coupled circuit
	4 th	Dot convention
	5 th	Parallel connection of coupled circuit
4	1 st	Electrical equivalents of magnetic coupled circuit
	2 nd	Solve numerical
	3 rd	Circuit elements and Analysis
	4 th	Active passive Unilateral Bilateral linear and non linear
	5 th	Mesh analysis, Mesh equations
5	1 st	Solve numerical on Mesh analysis
	2 nd	Super mesh analysis and solve problems
	3 rd	Nodal analysis, Nodal Equations by inspection
	4 th	Super Nodal analysis

LESSON PLAN OF CIRCUIT AND NETWORK THEORY FOR SEM-2021-22

	5 th	Solve Numerical
6	1 st	Source Transformation techniques and solve numerical
	2^{nd}	Network Theorems Definition of bilateral network
	3 rd	Star to delta and delta to star conversion
	4 th	Super position Theorem
	5 th	Solve numerical on super position theorem
7	1 st	Thevenin's Theorem
	2^{nd}	Solve numerical
	3 rd	Norton's Theorem and solve numerical
	4 th	Maximum Power transfer theorem
	5 th	AC Circuit and Resonance – AC through RL, RC, RLC circuit
8	1 st	Solution of problems of AC through RL, RC, RLC series circuit
	2^{nd}	Solution of problems of AC through RL, RC, RLC parallel and composite circuit
	3 rd	Power factor and power triangle
	4 th	Expression for active, reactive and apparent power
	5 th	Derive the expression for series and parallel resonance
9	1 st	Bandwidth, Selectivity and Q factor in series resonance
	2^{nd}	Solve numerical
	3 rd	Polyphase Circuit- Concept of polyphase system and phase sequence
	4 th	Relation between phase and line in star and delta conversion
	5 th	Power equation in three phase circuit
10	1 st	Solve numerical on three phase power, star delta
	2^{nd}	Measurement of three phase power – Two wattmeter method
	3 rd	Solve numerical
	4 th	Transient – Steady state and transient response
	5 th	Transient response of series RL circuit having DC excitation
11	1 st	Transient response of series RC circuit having DC excitation
	2^{nd}	Transient response of series RLC circuit having DC excitation
	3 rd	Transient response of series RLC circuit having AC excitation
	4 th	Additional Examples

LESSON PLAN OF CIRCUIT AND NETWORK THEORY FOR SEM-2021-22

	5 th	
12	1 st	Two Port Network – Network Elements (Linear, Non linear, Active, Passive, Bilateral)
	2^{nd}	Network Configuration
	3 rd	Z parameters (Equation, Matrix form)
	4 th	Y Parameters
	5 th	Transmission Parameters (ABCD parameters)
13	1 st	Hybrid Parameters and solve numerical
	2^{nd}	Condition for Reciprocal and symmetry
	3 rd	Inter Relationships between parameters (Z in terms of ABCD, Y, h)
	4 th	Inter Relationships between parameters (Y in terms of ABCD, Z, h)
	5 th	Inter Relationships between parameters (ABCD in terms of Z, Y, h)
14	1^{st}	Solve Numerical
	2^{nd}	Solve Numerical and Doubt Clear
	3 rd	Filters – Define filter
	4 th	Classification of Filters – BPF, BSF, LPF, HPF
	5 th	Difference between active and passive filter
15	1 st	Cut off frequency
	2^{nd}	Constant K – LPF and HPF
	3 rd	Constant K – BPF and BSF
	4 th	Solve numerical
	5 th	Solve numerical and Doubt Clear