Discipline- Electrical Engg.	Semester-6 th	Name of the teaching faculty- Swarnaprabha panigrahi
Subject- Control System	No of days/week class allotted-5	No of weeks-15
Week	Class day	Theory topic
1	1 st	FUNDAMENTAL OF CONTROL SYSTEM - Classification of Control system
	2 nd	Open loop system & Closed loop system and its comparison
	3 rd	Effects of Feed back
	4 th	Standard test Signals(Step, Ramp, Parabolic, Impulse Functions)
	5 th	Servomechanism
2	1 st	MATHEMATICAL MODEL OF A SYSTEM - Transfer Function & Impulse response
	2 nd	Properties, Advantages & Disadvantages of Transfer Function
	3 rd	Poles & Zeroes of transfer Function
	4 th	Simple problems of transfer function of network
	5 th	Mathematical modelling of Electrical Systems(R, L, C, Analogous systems)
3	1 st	CONTROL SYSTEM COMPONENTS - Components of Control System
	2 nd	Gyroscope, Synchros, Tachometer
	3 rd	DC servomotors, Ac Servomotors
	4 th	Doubt Clearing
	5 th	Transfer function Solve
4	1 st	BLOCK DIAGRAM ALGEBRA & SIGNAL FLOW GRAPHS - Definition: Basic Elements of Block Diagram
	2 nd	Canonical Form of Closed loop Systems
	3 rd	Rules for Block diagram reduction
	4 th	Practice block diagram reduction problems
	5 th	Procedure for of Reduction of Block Diagram
5	1 st	Simple Problem for equivalent transfer function
	2^{nd}	Sensitivity Analysis
	3 rd	Basic Definition in Signal Flow Graph & properties
	4 th	Construction of Signal Flow graph from Block diagram
	5 th	Mason's Gain formula
6	1 st	Simple problems in Signal flow graph for network

	2^{nd}	Problem practice on mason's gain formula
	3 rd	TIME RESPONSE ANALYSIS Time response of control system.
	4 th	Standard Test signal. Step signal
	5 th	Ramp Signal, Parabolic signal
7	1 st	Impulse Signal
	2^{nd}	Time Response of first order system
	3 rd	Unit step response
	4 th	Unit impulse response
	5 th	Time response of second order system to the unit step input
8	1 st	Time response specification, Derivation of expression for rise time, peak time, peak overshoot, settling time and steady state error
	2 nd	Steady state error and error constants. Types of control system. [Steady state errors in Type-0, Type-1, Type-2 system]
	3 rd	Effect of adding poles and zero to transfer function
	4 th	Response with P, PI, PD and PID controller
	5 th	Numerical solving
9	1 st	ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE
	2^{nd}	Relative and absolute stability
	3 rd	Root locus concept
	4 th	Procedure to draw root locus diagram
	5 th	Construction of root loci
10	1 st	Breakeven point, centroid and asymtote
	2^{nd}	Effect of adding poles and zeros to G(s) and H(s
	3 rd	Stability analysis using root locus diagram
	4 th	Angle of arrival and departure calculation
	5 th	Gain margin and phase margin calculation using root locus
11	1 st	Numerical solving
	2^{nd}	Doubt clearing
	3 rd	FREQUENCY RESPONSE ANALYSIS - Correlation between time response and frequency response
	4 th	Polar plots
	5 th	Polar plots

12	1 st	Bode plots
	2^{nd}	Bode plots
	3 rd	Bode plots
	4 th	All pass and minimum phase system
	5 th	Computation of Gain margin and phase margin
13	1^{st}	Computation of Gain margin and phase margin
	2^{nd}	Computation of Gain margin and phase margin
	3 rd	Numerical practice
	4^{th}	Log magnitude versus phase plot
	5 th	NYQUIST PLOT - Principle of argument
14	1 st	Principle of argument
	2^{nd}	Nyquist stability criterion
	3 rd	Nyquist stability criterion
	4 th	Niquist stability criterion applied to inverse polar plot
	5 th	Effect of addition of poles and zeros to G(S) H(S) on the shape of Niquist plot
15	1 st	Assessment of relative stability
	2^{nd}	Constant M and N circle
	3 rd	Nicholas chart
	4^{th}	Numerical Solving
	5 th	Doubt clearing

Discipline- Electrical Engg.	Semester-6 th	Name of the teaching faculty- Sidharth Sankar Sahu
Subject- EIE	No of days/week	No of weeks-15
	class allotted-5	
Week	Class day	Theory topic
1	1 st	INDIAN ELECTRICITY RULES - Definitions, Ampere, Apparatus, Accessible, Bare, cable, circuit, circuit breaker, conductor voltage (low, medium, high, EH)
	2 nd	live, dead, cut-out, conduit, system, danger, Installation, earthing system, span, volt, switch gear, etc
	3 rd	General safety precautions, rule 29, 30, 31, 32, 33, 34, 35
	4 th	General safety precautions 36, 40, 41, 43, 44, 45, 46
	5 th	General conditions relating to supply and use of energy : rule 47, 48, 49, 50, 51
2	1 st	General conditions relating to supply and use of energy : rule 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
		65, 66, 67, 68, 70
	2^{nd}	OH lines : Rule 74, 75, 76, 77, 78, 79, 80, 86, 87, 88, 89, 90, 91
	3 rd	ELECTRICAL INSTALLATIONS - Electrical installations, domestics, industrial, Wiring System
	4 th	Internal distribution of Electrical Energy. Methods of wiring
	5 th	systems of wiring, wire and cable, conductor materials used in cables, insulating
3	1 st	Materials mechanical protection. Types of cables used in internal wiring
	2 nd	multi-stranded cables, voltage grinding of cables, general specifications of cables
	3 rd	ACCESSORIES: Main switch and distribution boards, conduits, conduit accessories and fittings
	4 th	Lighting accessories and fittings, fuses, important definitions, determination of size of fuse – wire, fuse units.
	5 th	Earthing conductor, earthing, IS specifications regarding earthing of electrical installations
4	1 st	Points to be earthed. Determination of size of earth wire and earth plate for domestic and industrial installations. Material required for GI pipe earthing.
	2 nd	Points to be earthed. Determination of size of earth wire and earth plate for domestic and industrial installations. Material required for GI pipe earthing.
	3 rd	LIGHTING SCHEME: Aspects of good lighting services
	4 th	Types of lighting schemes, design of lighting schemes, factory lighting
	5 th	public lighting installations, street lighting, general rules for wiring

5	1 st	Determination of number of points (light, fan, socket, outlets), determination of total load, determination of Number of sub circuits.
	2^{nd}	Determination of number of points (light, fan, socket, outlets), determination of total load, determination of Number of sub circuits
	3 rd	INTERNAL WIRING - Type of internal wiring, cleat wiring, CTS wiring
	4 th	wooden casing capping, metal sheathed wiring, conduit wiring
	5 th	Advantage and disadvantages comparison and applications
6	1 st	Prepare one estimate of materials required for CTS wiring for small domestic installation of one room and one verandah within 25 m2 with given light, fan & plug points
	2 nd	Prepare one estimate of materials required for CTS wiring for small domestic installation of one room and one verandah within 25 m2 with given light, fan & plug points
	3 rd	Prepare one estimate of materials required for CTS wiring for small domestic installation of one room and one verandah within 25 m2 with given light, fan & plug points
	4 th	Prepare one estimate of materials required for conduit wiring for small domestic installation of one room and one verandha within 25 m2 with given light, fan & plug points
	5 th	Prepare one estimate of materials required for conduit wiring for small domestic installation of one room and one verandha within 25 m2 with given light, fan & plug points
7	1 st	Prepare one estimate of materials required for conduit wiring for small domestic installation of one room and one verandha within 25 m2 with given light, fan & plug points
	2 nd	Prepare one estimate of materials required for concealed wiring for domestic installation of two rooms and one latrine
	3 rd	bath, kitchen & verandah within 80m2 with given light, fan & plug points
	4 th	Prepare one estimate of materials required for erection of conduct wiring to a small workshop installation about 30m2 and load within 10 KW
	5 th	Prepare one estimate of materials required for erection of conduct wiring to a small workshop installation about 30m2 and load within 10 KW
8	1 st	Doubt Clearing
	2^{nd}	Class test
	3 rd	OVER HEAD INSTALLATION - Main components of overhead lines, line supports, factors Governing Height of pole, conductor materials

	4 th	determination of size of conductor for overhead transmission line, cross arms
	5 th	pole brackets and clamps, guys and stays, conductors configurations, spacing
9	1 st	clearances, span lengths, overhead line insulators, types of insulators, lighting arresters
	2^{nd}	danger plates, anti-climbing devices, bird guards, beads of jumpers, jumpers, tee-offs, guarding of overhead lines
	3 rd	Prepare an estimate of materials required for LT distribution line within load of 100 KW maximum and standard spans involving calculation of the size of conductor (from conductor chart
	4 th	current carrying capacity and voltage regulation Electrical Page 5 of 28 consideration using ACSR
	5 th	Prepare an estimate of materials required for LT distribution line within load of 100 KW maximum
10	1 st	standard spans involving calculation of the size of conductor (from conductor chart)
	2^{nd}	current carrying capacity and voltage regulation consideration using ACSR
	3 rd	4. Prepare an estimate of materials required for HT distribution line (11 KV) within 2 km and load of
		2000 KVA maximum and standard spans involving calculation of the size of conductor (from conductor chart)
	4 th	4.Prepare an estimate of materials required for HT distribution line (11 KV) within 2 km and load of 2000 KVA maximum and standard spans involving calculation of the size of conductor (from conductor chart)
	5 th	current carrying capacity and voltage regulation of the size of conductor (from conductor chart)
11	1 st	current carrying capacity and voltage regulation consider action using ACSR
	2^{nd}	Doubt clearance
	3 rd	OVER HEAD SERVICE LINES - Components of service lines, service line (cables and conductors), bearer wire, lacing rod
	4 th	Components of service lines, service line (cables and conductors), bearer wire, lacing rod
	5^{th}	Ariel fuse, service support, energy box and meters etc
12	1 st	Prepare and estimate for providing single phase supply of load of 5 KW (light, fan, socket) to a single stored residential building
	2 nd	Prepare and estimate for providing single phase supply of load of 5 KW (light, fan, socket) to a single stored residential building
	3 rd	Prepare and estimate for providing single phase supply of load of 5 KW (light, fan, socket) to a single stored residential building

	4 th	Prepare and estimate for providing single phase supply load of 3KW to each floor of a double stored building having separate energy meter
	5 th	Prepare and estimate for providing single phase supply load of 3KW to each floor of a double stored building having separate energy meter
13	1 st	Prepare and estimate for providing single phase supply load of 3KW to each floor of a double stored building having separate energy meter
	2 nd	Prepare one estimate of materials required for service connection to a factory building with load within 15 KW using insulated wire
	3 rd	Prepare one estimate of materials required for service connection to a factory building with load within 15 KW using insulated wire
	4 th	Prepare one estimate of materials required for service connection to a factory building with load within 15 KW using insulated wire
	5 th	Prepare one estimate of materials required for service connection to a factory building with load within 15 KW using bare conductor and insulated wire combined
14	1 st	Prepare one estimate of materials required for service connection to a factory building with load within 15 KW using bare conductor and insulated wire combined
	2 nd	Prepare one estimate of materials required for service connection to a factory building with load within 15 KW using bare conductor and insulated wire combined
	3 rd	ESTIMATING FOR DISTRIBUTION SUBSTATIONS - Prepare one materials estimate for following types of transformer substations
	4 th	Pole mounted substation
	5 th	Pole mounted substation
15	1 st	Pole mounted substation
	2^{nd}	Plinth Mounted substation
	3 rd	Plinth Mounted substation
	4 th	Plinth Mounted substation
	5 th	Doubt Clearnce

Discipline- Electrical Engg.	Semester-6 th	Name of the teaching faculty- SWARNAPRABHA PANIGRAHI
Subject- RES	No of days/week	No of weeks-15
	class allotted-5	
Week	Class day	Theory topic
1	1 st	Introduction to Renewable energy: Environmental consequences of fossil fuel use
	2 nd	Environmental consequences of fossil fuel use
	3 rd	Importance of renewable sources of energy
	4 th	Importance of renewable sources of energy
	5 th	Sustainable Design and development
2	1 st	Sustainable Design and development
	2 nd	Types of RE sources
	3 rd	Types of RE sources
	4 th	Limitations of RE sources
	5 th	Limitations of RE sources
3	1 st	Present Indian and international energy scenario of conventional and RE sources
	2 nd	Present Indian and international energy scenario of conventional and RE sources
	3 rd	Solar Energy - Solar photovoltaic system-Operating principle
	4 th	Solar photovoltaic system-Operating principle
	5 th	Photovoltaic cell concepts
4	1 st	Photovoltaic cell concepts
	2 nd	Cell, module, array, Series and parallel connections. Maximum power point tracking (MPPT)
	3 rd	Classification of energy Sources
	4 th	Classification of energy Sources
	5 th	Extra-terrestrial and terrestrial Radiation
5	1 st	Extra-terrestrial and terrestrial Radiation
	2 nd	Azimuth angle, Zenith angle, Hour angle, Irradiance, Solar constant
	3 rd	Azimuth angle, Zenith angle, Hour angle, Irradiance, Solar constant
	4 th	Solar collectors, Types and performance characteristics
	5 th	Solar collectors, Types and performance characteristics

6	1 st	Applications: Photovoltaic - battery charger, domestic lighting, street lighting, water pumping, solar
		cooker, Solar Pond
	2^{nd}	Applications: Photovoltaic - battery charger, domestic lighting, street lighting, water pumping, solar
		cooker, Solar Pond
	3 rd	Wind Energy: Introduction to Wind energy.
	4^{th}	Introduction to Wind energy.
	5 th	Introduction to Wind energy.
7	1^{st}	Wind energy conversion
	2^{nd}	Wind energy conversion
	3 rd	Types of wind turbines
	4 th	Types of wind turbines
	5 th	Aerodynamics of wind rotors
8	1 st	Aerodynamics of wind rotors
	2^{nd}	Wind turbine control systems; conversion to electrical power
	3 rd	Induction and synchronous generators.
	4 th	Grid connected and self excited induction generator operation
	5 th	Constant voltage and constant frequency generation with power electronic control
9	1 st	Single and double output systems
	2^{nd}	Characteristics of wind power plant
	3 rd	Characteristics of wind power plant
	4 th	Biomass Power - Energy from Biomass
	5 th	Energy from Biomass
10	1 st	Biomass as Renewable Energy Source
	2^{nd}	Biomass as Renewable Energy Source
	3 rd	Biomass as Renewable Energy Source
	4^{th}	Types of Biomass Fuels - Solid, Liquid and Gas
	5 th	Types of Biomass Fuels - Solid, Liquid and Gas
11	1 st	Combustion and fermentation.
	2^{nd}	Combustion and fermentation.
	3 rd	Anaerobic digestion.

	4 th	Anaerobic digestion.
	5 th	Types of biogas digester
12	1 st	Doubt clearing
	2^{nd}	Class test
	3 rd	Other Energy Sources
	4 th	Tidal Energy: Energy from the tides, Barrage and Non Barrage Tidal power systems
	5 th	Tidal Energy: Energy from the tides, Barrage and Non Barrage Tidal power systems
13	1 st	Ocean Thermal Energy Conversion (OTEC)
	2^{nd}	Ocean Thermal Energy Conversion (OTEC)
	3 rd	Ocean Thermal Energy Conversion (OTEC)
	4 th	Geothermal Energy – Classification
	5 th	Geothermal Energy – Classification
14	1^{st}	Hybrid Energy Systems
	2^{nd}	Hybrid Energy Systems
	3 rd	Doubt Clearing
	4 th	Class test
	5 th	Need for Hybrid Systems
15	1 st	Need for Hybrid Systems
	2^{nd}	Diesel-PV, Wind-PV, Micro hydel-PV
	3 rd	Electric and hybrid electric vehicles
	4 th	Doubt clearing
	5 th	

Discipline- Electrical Engg.	Semester-6 th	Name of the teaching faculty- Ashirbad Behera
Subject- SGPD	No of days/week	Semester from- 19/04/2021 to date- 13/08/2021
	class allotted-5	No of weeks-15
Week	Class day	Theory topic
1	1 st	Introduction to switchgear, Essential feature
	2 nd	Switchgear equipment (Air switch, oil switch, isolator, CB)
	3 rd	Different types of busbar arrangements (Single busbar, Duplicate busbar)
	4 th	Layout diagram and advantages of busbar arrangements
	5 th	Switchgear Accommodation (Outdoor type and indoor type)
2	1 st	Short circuit (cause and effect of short circuit)
	2 nd	Fault on Power system
	3 rd	Symmetrical Fault calculation
	4 th	Symmetrical fault on three phase system and limitations of faults
	5 th	Percentage reactance
3	1 st	Percentage reactance and Base KVA/MVA
	2 nd	Formula and problem solving on %X and base KVA
	3 rd	Short Circuit KVA
	4 th	Reactor control of short circuit
	5 th	Location of reactor (Generator reactor, feeder reactor, busbar reactor)
4	1 st	Symmetrical fault calculation procedure, Draw the reactance diagram
	2 nd	Solve problem on symmetrical fault calculation
	3 rd	Fuses Desirable characteristics of fuse elements
	4 th	Fuse element materials, Important terms related to fuse (Current rating, fusing current, fusing
		factor, prospective current, cut off current)
	5 th	Types of fuse - low voltage fuse (semi enclosed rewireable, HRC cartridge type, HRC trip type)
5	1 st	High voltage fuse (cartridge type and liquid type)
	2 nd	Difference between fuse and circuit breaker and solve numerical on fuse
	3 rd	Circuit BreakerDefinition and principal of CB

	4 th	Arc phenomenon and Principle of arc extinction (splitting the arc, lengthening the arc)
	5 th	The high resistance method and low resistance method
6	1 st	Important terms – Arc voltage, restricting voltage, recovery voltage
	2^{nd}	Classification of circuit breaker
	3 rd	Air blast circuit breaker (Axial blast type and redial blast type)
	4 th	Oil circuit breaker (Bulk oil circuit breaker)
	5 th	Minimum oil circuit breaker
7	1 st	Maintenance of oil circuit breaker
	2^{nd}	Sulphur Hexafluoride Circuit Breaker
	3 rd	Properties of SF6
	4 th	Vacuum Circuit breaker
	5 th	Vacuum Circuit breaker Continue
8	1 st	Switchgear Components – Bushing, Circuit breaker contact (Tulip contact, Wedge contact, Butt
		contact)
	2^{nd}	Instrument Transformer (CT and PT), Busbar and conductor
	3 rd	Problem of circuit interruption (RRRV, Current copping)
	4 th	Problem of circuit interruption (capacitive current braking) and Resistance switching
	5 th	Circuit Breaker rating and Doubt Clearance
9	1 st	Protective Relays Definition of Protective relay
	2^{nd}	Fundamental requirements of Protective relay
	3 rd	Basic Relay operation - Electromagnetic Attraction type (Armature type, Balanced beam type)
	4 th	Induction type relay (Shaded pole, wattmeter type and Induction cup type)
	5 th	Important Terms (Pick up current, Current setting, PSM and TSM)
10	1 st	Relay Timing (Instantaneous, Inverse time, Definite time relay)
	2^{nd}	Classification of functional relays – Over current relay, reverse power relay
	3 rd	Distance relay, Directional relay
	4 th	Differential relay – Current differential and voltage differential relay
	5 th	Types of Protection
11	1 st	Numerical on PSM, TSM
	2^{nd}	Protection Of electrical power equipment and lines

	3 rd	Protection of alternator – Failure of prime mover, over current, over voltage, Stator winding fault
	4 th	Failure of field, overspeed and unbalancing loading
	5 th	Differential and modified differential protection of alternator
12	1 st	Balanced earth fault protection
	2^{nd}	Protection of transformer against open circuit, overheat, winding short circuit
	3 rd	Buchholz relay and earth fault protection of transformer
	4 th	Protection of busbar – Differential protection and fault bus protection
	5 th	Merz price protection
13	1 st	Explain protection of feeder by overcurrent and earth fault relay
	2^{nd}	Protection against overvoltage – Voltage surge and cause of overvoltage
	3 rd	Internal cause of overvoltage Switching surge, Arcing ground
	4^{th}	Insulation failure and resonance
	5 th	External cause of overvoltage – lightning
14	1^{st}	Mechanism of lightning discharge and types of lightning stroke – direct and indirect
	2^{nd}	Harmful effects of lightning and protection against lightning
	3 rd	Earthing screen, Overhead ground wire and surge diverter
	4^{th}	Lightning arresters – Rod gap, horn gap and valve type arresters
	5 th	Surge absorber
15	1 st	Doubt clearance
	2^{nd}	Static Relay
	3 rd	Advantages of static relay and Instantaneous overcurrent relay
	4 th	Principle of IDMT relay
	5 th	

Discipline- Electrical Engg.	Semester-4 th	Name of the teaching facualty- SwarnaprabhaPanigrahi
Subject- Ec-I	No of days/week	No of weeks-15
	class allotted-5	
Week	Class day	Theory topic
1	1 st	DC GENERATOR - Introduction, operating principle of generator
	2 nd	Constructional features of DC machine- yoke, pole and field winding
	3 rd	Construction- armature, commutator, armature winding- back pitch, front pitch, resultant pitch,
		commutator pitch
	4 th	Simple lap winding
	5 th	Simple wave winding, dummy coil
2	1 st	Different types of DC machine
	2 nd	Derivation of EMF equation of DC generator (solve problem)
	3 rd	Losses and efficiency of DC generator
		Condition of maximum efficiency (solve problem)
	4 th	Armature reaction in DC machine
	5 th	Commutation
3	1 st	Methods of improving commutation
		Role of interpole and compensating winding
	2^{nd}	Characteristics of DC generator
	3 rd	Application of different types of DC generator
		Solve numerical
	4 th	Concept of critical resistance and critical speed of DC shunt generator
	5 th	Conditions of build up of EMF of DC generator
4	1 st	Parallel operation of DC generator
	2^{nd}	Parallel operation of DC generator, uses of DC generator
	3 rd	Brief discussion aboutDC generator, solve numerical
	4 th	Discussion on previous year questions on DC generator
	5 th	Doubt clearance
5	1 st	DC MOTOR -Introduction
	2 nd	Basic working principle of DC motor

	3 rd	Back EMF and it's significance
	4 th	Types of DC motor and it's voltage equation (solve numerical)
	5 th	Condition for maximum power output of a DC motor (solve numerical)
6	1 st	Derive torque equation (solve numerical)
	2 nd	Characteristics of shunt, series and compound DC motor and their application
	3 rd	Starting method of shunt, series and compound motor
	4 th	Speed control of DC shunt motor by flux control method (solve numerical)
	5 th	Speed control of DC shunt motor by armature voltage control method (solve numerical)
7	1 st	Speed control of DC series motor by field flux control method, tapped field method and series parallel method
	2^{nd}	Determination of efficiency of DC machine by brake test method (solve numerical)
	3 rd	Determination of efficiency of DC machine by swinburne's test method (solve numerical)
	4 th	Brake test and swinburne's test
	5 th	Losses, efficiency and power stages of DC motor
86	1 st	Solve numerical
	2^{nd}	Uses of DC motor, DC motor and DC generator
	3 rd	Doubt clearance
	4 th	SINGLE PHASE TRANSFORMER- Introduction
	5 th	Working principle of transformer
9	1^{st}	Constructional features of transformer
		Arrangements of core and winding in different types of transformer
	2^{nd}	Brief idea about transformer accessories-Conservator, tank , breather, explosion vent, etc
	3 rd	Types of cooling method
	4^{th}	Procedure for care and maintenance
	5 th	EMF equation of transformer
10	1^{st}	Ideal transformer, voltage transformation ratio
	2^{nd}	Operation of transformer at no load with phasor diagram
	3 rd	Operation of transformer on load with phasor diagram
	4 th	Equivalent resistance, leakage reactance and impedance of transformer
	5 th	Phasor diagram of transformer on load with winding resistance, leakage reactance with unity, lagging, leading pf

11	1 st	Explain equivalent circuit (solve numericals)
11	2^{nd}	Approximate and exact voltage drop calculation of a transformer
	3 rd	Regulation of transformer(solve numerical)
	4 th	Losses in a transformer(solve numerical)
	5 th	Open circuit test and short circuit test (solve numerical)
12		I V
12		Efficiency, efficiency at different loadc & pf, condition for maximum efficiency
	2 nd	All day efficiency (solve numericals)
	3 rd	Determination of load corresponding to maximum efficiency
	4 th	Parallel operation
	5 th	Solve numerical
13	1 st	Previous year questions solving
	2^{nd}	Doubt clearance
	3 rd	Class test
	4 th	Auto Transformer- Introduction
	5 th	Constructional features of auto-transformer
14	1 st	Working pricipel
	2^{nd}	Uses
	3 rd	Comparison of auto transformer with two winding transformer
	4 th	Saving of copper in auto transformer
	5 th	Tap changer with transformer(on load and off load condition)
15	1 st	Instrument Transformers- Introduction
	2^{nd}	CT & PT
	3 rd	Ratio error, phase angle error, burden
	4 th	Uses of CT & PT
	5 th	Previous year question paper discussion
,,	8	

Discipline- Electrical Engg.	Semester-4 th	Name of the teaching faculty- Sidharth Sankar Sahu
Subject- ED	No of days/week	No of weeks-15
	class allotted-4	
Week	Class day(3P/day)	Theory topic
1	1 st	WIRING DIAGRAM AND CONTROL CIRCUIT - 3 point D. C. motor starter
	2^{nd}	4 point D.C. motor starter
2	1 st	DOL starter
	2 nd	Star delta starter
3	1 st	Auto Transformer Starter
	2^{nd}	Rotor resistance starter
4	1 st	DRAW D.C. M/C PARTS (Dimensional Drawing) - Pole with pole shoes
	2^{nd}	Commutator
5	1 st	Armature
	2^{nd}	Simple lap winding
6	1 st	Simple lap winding
	2 nd	Simple wave winding
7	1^{st}	DRAW 1-PHASE & 3-PHASE TRANSFORMER (Assembly Drawing) - Stepped core type
	2^{nd}	Stepped core type
8	1 st	Plane shell type
	2^{nd}	Plane shell type
9	1 st	DRAW SKETCHES OF THE FOLLOWING AS PER B.I.S AND REC SPECIFICATIONS - Earthing installation
	2^{nd}	Earthing installation
10	1 st	Earthing installation
	2^{nd}	Double pole structure for LT and HT distribution lines
11	1 st	Double pole structure for LT and HT distribution lines
	2^{nd}	Double pole structure for LT and HT distribution lines
12	1 st	DRAW SINGLE LINE DIAGRAM OF SUBSTATION - Single line diagram of 33/11kV distribution substation
	2^{nd}	Single line diagram of 33/11kV distribution substation
13	1 st	Single line diagram of a 11/0.4 kV distribution substation
	2^{nd}	Single line diagram of a 11/0.4 kV distribution substation

14	1 st	COMPUTER AIDED ELECTRICAL DRAWING USING SOFT WARE - Draw Electrical symbols (take Print out)
	2 nd	Draw D.C. m/c parts (take print out)
15	1 st	Draw A. C. m/c parts (take print out)
	2 nd	Draw electrical layout of diagram of Electrical Installation of a building

Discipline- Electrical	Semester-4 th	Name of the teaching facualty- SwarnaprabhaPanigrahi
Engg.		
Subject- Electrical	No of	Semester from- 9/12/2019 to date- 31/03/2020
Machine Lab-I	days/week	No of weeks-15
	class allotted-	
	6	
Week	Class day	Practical topic
1	1 st	Identification of different terminal of a dc machine by test lamp method and multimeter method and to
		measure insulation resistance by megger-brief introduction, theory, procedure,
	2^{nd}	Practical observation, conclusion, record correction
2	1 st	Dimensional and material study of various parts of a dc machine-brief introduction, theory, procedure,
	2 nd	Practical observation, conclusion, record correction
3	1 st	Plot OCC of a dc shunt generator at constant speed and determine critical resistance from the graphbrief
		introduction, theory, procedure,
	2^{nd}	Practical observation, conclusion, record correction
4	1 st	Plot External characteristics of a dc shunt generator at constant speed,-brief introduction, theory, procedure,
	2^{nd}	Practical observation, conclusion, record correction
5	1 st	Study of three point starter. connect and run a dc shunt motor and measure the no load current-brief
		introduction, theory, procedure,
	2 nd	Practical observation , conclusion, record correction
6	1 st	Study of four point starter. Connect and run a dc compound motor and measure no load currentbrief introduction, theory, procedure.
	2 nd	Practical observation, conclusion, record correction.
7	1 st	Mid-sessional evaluationControl the speed of a dc shunt motor by field flux control method and armature
1	1	voltage control method brief introduction, theory, procedure,
	2 nd	Practical observation conclusion, record correction.
8	1 st	Determine the armature current vs. speed characteristic of a dc motorbrief introduction, theory, procedure.
	2 nd	Practical observation, conclusion, record correction.
9	1^{st}	Determine the efficiency of a dc machine by brake test methodbrief introduction, theory, procedure.

	2 nd	Practical observation, conclusion, record correction.
10	1 st	Identification of terminals determination of voltage transformation rotio of a single phase transformerbrief introduction, theory procedure.
	2^{nd}	Practical observation, conclusion, record correction.
11	1 st	Perform oc test and sc test of a single phase transformerbrief introduction, theory, procedure.
	2 nd	Practical observation, conclusion, record correction.
12	1 st	Determine the voltage regulation of a single phase transformer at different loads brief introduction, theory ,procedure.
	2 nd	Practical observation, conclusion, record correction.
13	1 st	Polarity test of single phase transformer and parallel operation of two single phase transformersbrief introduction, theory, procedure.
	2^{nd}	Practical observation, conclusion, record correction.S
14	1 st	
	2 nd	
15	1 st	
	2 nd	End-sessional evaluation

Discipline- Electrical Engg.	Semester-4 th	Name of the teaching faculty- Sidharth Sankar Sahu
Subject- GTD	No of days/week	No of weeks-15
	class allotted-4	
Week	Class day	Theory topic
1	1 st	Generation Of electricity
	2 nd	Elementary idea on generation of electricity from Thermal, Hydro and Nuclear power plant
	3 rd	Introduction to solar power plant
	4 th	Layout diagram of generating station and solve numerical on Hydro power plant
2	1 st	Transmission of electrics power
	2 nd	Short transmission line, Medium transmission line and long transmission line
	3 rd	Π model and T model
	4 th	Layout of transmission and Distribution line
3	1 st	Voltage regulation and Efficiency
	2 nd	Solve numerical on voltage regulation, efficiency and transmission line models
	3 rd	Kelvin's law for economical size of conductor
	4^{th}	Corona and corona loss on transmission line
4	1 st	Types of support, size and spacing of conductor (Overhead lines)
	2 nd	Types of conductor material (AAC, Aluminium, Stranded conductor, ACSR and Bundle conductor)
	3 rd	Types of insulator (Pin insulator, stray insulator), Cross arm
	4 th	Concept of Sag, Sag in overhead line at same level and different level
5	1 st	Approximate formula effect of wind, ice and temperature on sag (Solve numerical on Sag)
	2 nd	Doubt clearing secession
	3 rd	Introduction to Extra High Voltage AC transmission.
	4 th	Reasons for adoption of EHV AC line
6	1 st	Problems involved in Extra high voltage transmission
	2 nd	Different types DC lines
	3 rd	HVDC transmission
	4 th	Advantages and limitations of HVDC transmission system
7	1 st	Distribution System

	2 nd	Distribution system schemes (Radial, Ring Main, inter connection)
	3 rd	DC distributions
	4 th	Distributor input at one end
8	1 st	Distributor input at both ends
	2 nd	Ring Distributor
	3 rd	AC distribution
	4 th	Types of methods to solve AC distribution problems
9	1 st	Three phase three wire star connected arrangement
	2 nd	Solve numerical on DC distributor fed at one end
	3 rd	Cable installation and classification of cable
	4 th	Types of LT and HT cables with constructional feature
10	1 st	Methods of cable laying(Underground cable, cable ducts, In cable trenches in outdoor
		switchyard, fixed with clamps, power cables, control and communication cables)
	2^{nd}	Localization of cable faults – Murray loop for short circuit and earth faults
	3 rd	Localization of cable faults – Varley loop for short circuit and earth faults
	4 th	Doubt Clearance
11	1 st	Causes of low power factor and methods of improvement of power factor
	2^{nd}	Explain receiving end capacitor bank, and shunt reactor
	3 rd	Factors effecting the economics of generation
	4 th	Load curves (Base, peak load and energy consumption)
12	1 st	Load factor, Diversity factor and plant factor
	2^{nd}	Demand factor, Maximum demand
	3 rd	Peak load and Base load power plants
	4 th	Solve numerical on LF, DF, MD, DF
13	1 st	Types of tariff
	2 nd	Desirable characteristics of tariff
	3 rd	Explain flat rate and block rate tariff
	4 th	Two part and maximum demand tariff
14	1 st	Solve problems(tariff)
	2 nd	Doubt Clearance

	3 rd	Power plant, Power grid and Substation
	4 th	Interconnection between Power plant, grid and substation
15	1 st	Layout of LT and HT substation (explain)
	2^{nd}	Layout EHT Substation(explain)
	3 rd	Earthing of substation and transmission line
	4 th	Earthing of distribution line

DISCIPLINE	SEMESTER	Name of the teaching faculty- Ashirbad Behera
SUB-EMMI	4th	
	5days/week	No of Weeks-15(including tutorial)
1st	1 st	Ch-1 define accuracy, precision errors resolutions sensitivity And tolerance
	2 nd	Classification of measuring instrument
	3 rd	Deflecting controlling and damping arrangements in indicating type of instrument
	4 th	Calibration of instrument
	5 th	Ch-2 Construction and principle of operation
2nd	1 st	Advantage and disadvantage ,errors of MI type instrument
	2 nd	Construction and principle of operation
	3 rd	Advantage and disadvantage, errors of PMMC type instrument
	4 th	Dynamometer type instrument
	5 th	Revision and doubt clearing
3rd	1 st	Rectifier type of instrument
	2 nd	Induction type instrument
	3 rd	Extend the range of instrument by use of shunts and multiplier
	4 th	Numerical solving
	5 th	Revision and doubt clearing
4th	1 st	Ch-3 Wattmeter
	2 nd	Describe construction of wattmeter
	3 rd	Principle of working of dynamometer type wattmeter
	4 th	Different types of wattmeter (LPF and UPF type)
	5 th	Revision and doubt clearing
5 th	1 st	The errors of Dynamometer type wattmeter
	2 nd	Methods of correction of wattmeter
	3 rd	Induction type Wattmeters
	4 th	Ch-4 Energy meter and measurement of energy
	5 th	Numerical solving
6th	1 st	Introduction, Single phase induction type energy meter
	2 nd	Construction of Single phase induction type energy meter
	3 rd	Working principle of 1-ph induction type energy meter
	4 th	Compensation and adjustment
	5 th	Revision

7th	1 st	Testing of energy meter
	2 nd	Ch-5 Measurement of speed ,Frequency & power Factor
	3 rd	Working principle of Tachometer, types
	4 th	Working principles of operation and construction of mechanical & electrical resonance type Frequency
		meter
	5 th	Numerical solving
8th	1 st	Principle of operation of working of Dynamometer type 1-ph power factor meters
	2 nd	Principle of operation of working of Dynamometer type 3-ph power factor meters
	3 rd	Ch-6 Measurement of resistance inductance and capacitance
	4 th	Classification of resistance
	5 th	revision
9th	1 st	Measurement of low resistance by Potentiometer method
	2 nd	Measurement of Medium resistance by Wheat stone Bridge method
	3 rd	Measurement of high resistance by loss of charge method
	4 th	Construction, principle of operation of megger & Earth Tester for insulation resistance and earth
		resistance respectively
	5 th	revision
10th	1 st	Construction and principle of multimeter (analog)
	2 nd	Construction and principle of multimeter (Digital)
	3 rd	Measurement of inductance by Maxwell's bridge method
	4 th	Measurement of capacitance by Schering bridge method
	5 th	Numerical solving
11th	1 st	Ch-7 Sensors And Transducer
	2 nd	Transducer, sensing element or detector element and transduction element
	3 rd	Classification of transducer(with examples,) various class of transducer
	4 th	Resistive Transducer
	5 th	Problem practice
12th	1 st	Linear and angular motion potentiometer
	2 nd	Thermister and resistance thermometers
	3 rd	Wire resistance strain gauges
	4 th	Inductive transducer, principle of LVDT and uses
	5 th	Capacitive transducer, general principle
13th	1 st	Variable area capacitive transducer

	2 nd	Change in distance between plate capacitive transducer
	3 rd	Piezo electric transducer with application
	4 th	hall effect transducer with application
	5 th	Revision
14th	1 st	Ch-8 oscilloscope
	2 nd	introduction
	3 rd	Principle of operation of cathode ray tube
	4 th	Principle of operation of Oscilloscope
	5 th	Revision
15th	1 st	Measurement of Dc voltage and current
	2 nd	Measurement of Ac voltage and current
	3 rd	Measurement of phase and frequency
	4 th	Overall discussion
	5 th	Doubt clearing