CONTROL SYSTEM AND COMPONENT (TH2) - 6TH SEMESTER ETC		
Week	No of Periods Alloted (60)	Syllabus To be Covered
	1.Fundamental of Control	System - 5P
1ST	1st	1.1 Classification of Control system
	2nd	1.2 Open loop system & Closed loop system and its comparison
	3rd	1.3 Effects of Feed back
	4th	1.4 Standard test Signals(Step, Ramp, Parabolic, Impulse Functions)
	1st	1.5 Servomechanism
	2. Transfer Functions - 8P	
2ND	2nd	2.1 Transfer Function of a system & Impulse response,
	3rd	2.2 Properties, Advantages & Disadvantages of Transfer Function
	4th	2.3 Poles & Zeroes of transfer Function
3RD	1st	2.4 Poles & Zeroes of transfer Function
	2nd	2.5 Representation of poles & Zero on the s-plane
	3rd	2.6 Simple problems of transfer function of network
	4th	2.6 Simple problems of transfer function of network
	1st	2.6 Simple problems of transfer function of network
	3. Control system Compone	ents & mathematical modelling of physical System - 5P
4TH	2nd	3.1 Components of Control System
	3rd	3.2 Potentiometer, Synchros, Diode modulator & demodulator
	4th	3.2 Potentiometer, Synchros, Diode modulator & demodulator
	1st	3.3 DC motors, AC Servomotors
	2nd	3.4 Modelling of Electrical Systems(R, L, C, Analogous systems)
5TH	4. Block Diagram & Signal F	
	3rd	4.1 Definition of Basic Elements of a Block Diagram
	4th	4.2 Canonical Form of Closed loop Systems
		4.3 Rules for Block diagram Reduction
6ТН	1st	4.4 Procedure for of Reduction of Block Diagram
	2nd	4.5 Simple Problem for equivalent transfer function
	3rd	4.6 Basic Definition in SFG & properties
	4th	4.7 Mason's Gain formula
	1st	4.8 Steps foe solving Signal flow Graph
	2nd	4.9 Simple problems in Signal flow graph for network
	5. Time Domain Analysis of	Control Systems - 8P
7TH		5.1 Definition of Time, Stability, steady-state response, accuracy, transient
	3rd	accuracy, In-sensitivity and robustness.
	4th	5.2 System Time Response
	1st	5.3 Analysis of Steady State Error
	2nd	5.4 Types of Input & Steady state Error(Step ,Ramp, Parabolic)
8TH	3rd	5.5 Parameters of first order system & second-order systems
		5.6 Derivation of time response Specification (Delay time, Rise time, Peak
	4th	time, Setting time, Peak over shoot)
		5.6 Derivation of time response Specification (Delay time, Rise time, Peak
	1st	time,Setting time,Peak over shoot)
		5.6 Derivation of time response Specification (Delay time, Rise time, Peak
	2nd	time,Setting time,Peak over shoot)
9TH	6. FeedbackCharacteristics	
	3rd	6.1 Effect of parameter variation in Open loop System & Closed loop Systems
		on the state of parameter variation in open loop system & closed loop systems

		6.2 Introduction to Basic control Action& Basic modes of feedback control:	
	4th	proportional, integral and derivative	
10TH	1st	6.3 Effect of feedback on overall gain, Stability	
	2nd	6.3Effect of feedback on overall gain, Stability	
	3rd	6.4 Realisation of Controllers(P, PI,PD,PID) with OPAMP	
	4th	6.4 Realisation of Controllers(P, PI,PD,PID) with OPAMP	
11TH	7. Stability concept& Root locus Method - 8P		
	1st	7.1 Effect of location of poles on stability	
	2nd	7.2 RouthHurwitz stability criterion.	
	3rd	7.3 RouthHurwitz stability criterion.	
	4th	7.3 RouthHurwitz stability criterion.	
	1st	7.4 Steps for Root locus method	
12TH	2nd	7.5 Root locus method of design(Simple problem)	
	3rd	7.5 Root locus method of design(Simple problem)	
	4th	7.5 Root locus method of design(Simple problem)	
	8. Frequency-response analysis&Bode Plot -7P		
	1st	8.1 Frequencyresponse, Relationship between time & frequency response	
13TH	2nd	8.2 Methods of Frequency response	
	3rd	8.3 Polar plots & steps for polar plot	
	4th	8.4 Bodes plot & steps for Bode plots	
14TH	1st	8.5 Stability in frequency domain, Gain Margin& Phase margin	
	2nd	8.6 Nyquist plots. Nyquiststability criterion.	
	3rd	8.7 Simple problems as above	
	9. State variable Analysis - 5P		
	4th	9.1 Concepts of state, state variable, state model,	
	1st	9.1 Concepts of state, state variable, state model,	
15TH	2nd	9.2 state modelsfor linear continuous time functions(Simple)	
	3rd	9.2 state modelsfor linear continuous time functions(Simple)	
	4th	9.2 state modelsfor linear continuous time functions(Simple)	