3 RD SE	M-E	TC – I	DIGITAL ELECTRONICS(THEORY 3) 4P/Wee Total - 60P	ek - 15 Weeks,		
	1		the Faculty: Deepika Panda (Academic Year 20	020-21)		
WEEKS	No. of Days/per week Class allotted: 4		Syllabus To be Covered			
	Unit - 1 : Basics of Digital Electronics [12 Period]					
1ST WEEK	1st	1	Number System-Binary, Octal, Decimal, Hexadecimal			
	2nd	2	Conversion from one system to another number system.			
	3rd	3	Arithmetic Operation-Addition, Subtraction, Multiplication, Division			
	4th	4	1's & 2's complement of Binary numbers& Subtraction using complements method			
2ND WEEK	1st	5	Digital Code & its application & distinguish between weighted & non-weight Code, Binary codes, excess-3 and Gray codes.			
	2nd	6	Logic gates: AND,OR,NOT,NAND,NOR, Exclusive-OR, Exclusive-NOR Symbol, Function, expression, truth table & timing diagram			
	3rd	7	Universal Gates & its Realisation			
	4th	8	Universal Gates & its Realisation			
	1st	9	Boolean algebra, Boolean expressions, Demorgan's Theorems.			
3RD WEEK	2nd	10	Represent Logic Expression: SOP & POS forms			
	3rd	11	Karnaugh map (3 & 4 Variables) & Minimization of logical expressions			
	4th	12	Karnaugh map (3 & 4 Variables) don't care conditions			
		Unit	- 2: Combinational Logic Circuits	[12 Period]		
4TH WEEK	1st	13	Half adder			
	2nd	14	Full adder			
	3rd	15	Half Subtractor			
	4th	16	Full Subtractor			
5TH WEEK	1st	17	Parallel Binary 4 bit adder.			
	2nd	18	Serial adder			

	3rd	19	Multiplexer (4:1)		
	4th	20	De- multiplexer (1:4)		
6TH WEEK	1st	21	Decoder, Encoder		
	2nd	22	Digital comparator (3 Bit)		
	3rd	23	Seven segment Decoder		
	4th	24	Seven segment Decoder		
	Unit-3: Sequential logic Circuits			[12 Period]	
7TH WEEK	1st	25	Principle of flip-flops operation, its Types,		
	2nd	26	Principle of flip-flops operation, its Types,		
	3rd	27	SR Flip Flop using NAND Latch (un clocked)		
	4th	28	SR Flip Flop using NOR Latch (un clocked)		
	1st	29	Clocked SR flip-flops-Symbol, logic Circuit, truth table and app	olications	
	2nd	30	Clocked D flip-flops-Symbol, logic Circuit, truth table and appl	ications	
8TH WEEK	3rd	31	Clocked JK flip-flops-Symbol, logic Circuit, truth table and app	olications	
	4th	32	Clocked T flip-flops-Symbol, logic Circuit, truth table and appli	ications	
	1st	33	Clocked JK Master Slave flip-flops-Symbol, logic Circuit, truth applications	table and	
	2nd	34	Clocked JK Master Slave flip-flops-Symbol, logic Circuit, truth applications	table and	
9TH WEEK	3rd	35	Concept of Racing and how it can be avoided.		
	4th	36	Concept of Racing and how it can be avoided.		
10TH WEEK	Unit-4: Registers, Memories & PLD [08 Period				
	1st	37	Shift Registers-Serial in Serial -out, Serial- in Parallel-out		
	2nd	38	Shift Registers-Parallel in serial out and Parallel in parallel out		
	3rd	39	Universal shift registers-Applications. Types of Counter & appl	ications	
	4th	40	Binary counter, Asynchronous ripple counter (UP & DOWN)		

11TH WEEK	1st	41	Binary counter : Decade counter. Synchronous counter, Ring Counter.			
	2nd	42	Binary counter : Ring Counter.			
	3rd	43	Concept of memories-RAM, ROM, static RAM, dynamic RAM, PS RAM			
	4th	44	Basic concept of PLD & applications			
	Unit-5:		A/D and D/A Converters [07 Period]			
12TH WEEK	1st	45	Necessity of A/D and D/A converters.			
	2nd	46	D/A conversion using weighted resistors methods.			
	3rd	47	D/A conversion using weighted resistors methods.			
	4th	48	D/A conversion using R-2R ladder (Weighted resistors) network.			
	1st	49	D/A conversion using R-2R ladder (Weighted resistors) network.			
	2nd	50	A/D conversion using counter method.			
13TH WEEK	3rd	51	A/D conversion using Successive approximate method			
	J	U nit-	6: LOGIC FAMILIES [09 Period]			
	4th	52	Various logic families & categories according to the IC fabrication process			
	1st	53	Various logic families & categories according to the IC fabrication process			
	2nd	54	Characteristics of Digital ICs- Propagation Delay, fan-out, fan-in with Reference to logic families.			
14TH WEEK	3rd	55	Characteristics of Digital ICs- Power Dissipation, Noise Margin with Reference to logic families.			
	4th	56	Characteristics of Digital ICs- Power Supply requirement with Reference to logic families.			
15TH WEEK	1st	57	Characteristics of Digital ICs- Speed with Reference to logic families.			
	2nd	58	Features, circuit operation & various applications of TTL (NAND)			
	3rd	59	Features, circuit operation & various applications of CMOS (NAND)			
	4th	60	Features, circuit operation & various applications of CMOS (NOR)			